The Crystal Structure of $\mathbf{N}_{2} \mathrm{O}_{5} . \mathbf{3 S O}_{3}$

By K. Eriks* and C. H. MacGilllavry
Laboratory for General and Inorganic Chemistry, University of Amsterdam, Holland

(Received 26 October 1953)
The crystals of $\mathrm{N}_{2} \mathrm{O}_{5} .3 \mathrm{SO}_{3}$ are monoclinic, with $a=19.54, b=7 \cdot 30, c=7.56 \AA, \beta=102^{\circ}$. Systematic absences lead to space groups C2/c or Cc. Although intensity statistics would indicate a center of symmetry, no normal structure in the space group $C 2 / c$ could be found. On the other hand, it was possible to derive a set of atomic coordinates with symmetry $C c$ with strong pseudosymmetry which introduces a false center in one of the projections. The structure consists of NO_{2} and $\mathrm{S}_{3} \mathrm{O}_{10}$ groups, in agreement with the interpretation of Raman spectra.

1. Introduction

The investigation on compounds $\mathrm{N}_{2} \mathrm{O}_{5} . n \mathrm{SO}_{3}$ was started in order to obtain a better insight into the structures of various nitrating agents. The work in this laboratory has been carried out simultaneously with Ingold's investigations and confirms the latter's results. The preparation of one compound, viz. $\mathrm{N}_{2} \mathrm{O}_{5} .4 \mathrm{SO}_{3}$, was described as early as 1908 by Pictet \& Karl (1908), but it was impossible to confirm their results. This is in agreement with the results of Ingold and his coworkers (Gillespie, Hughes \& Ingold, 1950), who were able to prepare only the compounds with $n=2$ and $n=3$. By mixing solutions of $\mathrm{N}_{2} \mathrm{O}_{5}$ and SO_{3} in POCl_{3}, we obtained a relatively pure compound which had the composition $\mathrm{N}_{2} \mathrm{O}_{5} .3 \mathrm{SO}_{3}$, containing a few per cent of $\mathrm{N}_{2} \mathrm{O}_{3}$.

Raman spectra indicate that NO_{2}^{+}ions occur in the compound. The spectra contain a strong line at 1400 $\mathrm{cm} .^{-1}$, which is also found in $\mathrm{NO}_{2} . \mathrm{ClO}_{4}$ (Gillespie et al., 1950) and in solid $\mathrm{N}_{2} \mathrm{O}_{5}$ (Chédin, 1937) and which must be attributed to NO_{2}^{+}. The structure of these compounds is known to be $\mathrm{NO}_{2}^{+} . \mathrm{ClO}_{4}^{-}$(Cox, Jeffrey \& Truter, 1948) and $\mathrm{NO}_{2}^{+} \cdot \mathrm{NO}_{3}^{-}$(Grison, Eriks \& de Vries, 1950) respectively.

These data suggest that the structure of $\mathrm{N}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{SO}_{3}$ will be $\left(\mathrm{NO}_{2}^{+}\right)_{2} \cdot \mathrm{~S}_{3} \mathrm{O}_{10}^{-}$. A complete description of the preparation of the compound, together with the Raman spectroscopic data, has been published elsewhere (Gerding \& Eriks, 1952; Eriks, 1952).

2. Crystal data

The compound $\mathrm{N}_{2} \mathrm{O}_{5} .3 \mathrm{SO}_{3}$ is a hard white solid with a melting point of about $128^{\circ} \mathrm{C}$. Crystals, which can be obtained from the melt, are thin colorless plates, conventionally chosen as parallel to (100). They are very hygroscopic so that a capillary technique must be used for getting X-ray diagrams, and besides they show a strong inclination for twinning on the (100)

[^0]plane. Suitable single crystals could be selected under the polarizing microscope. The crystals are optically biaxial, positive, with n_{γ} practically perpendicular to the (100) plane.

Rotation and Weissenberg exposures were obtained with $\mathrm{Cu} K$ radiation around the b and c axes. From these diagrams the following cell dimensions were calculated:

$$
a=19 \cdot 54, b=7 \cdot 30, c=7 \cdot 56 \AA, \beta=102^{\circ} .
$$

The unit cell contains four molecules $\mathrm{N}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{SO}_{3}$. Calculated density 2.189 g.cm. ${ }^{-3}$; experimental density 2.17 g.cm. ${ }^{-3}$.

Intensities were estimated visually, using the mul-tiple-film technique. They were corrected for Lorentz and polarization factors. Absorption could not be neglected; it was accounted for by a simplified graphical method based on Albrecht's method (Eriks, 1952).

From the absences, $h k l$ with $h+k=2 n+1$ and $h 0 l$ with $l=2 n+1$, two space groups are possible,

Fig. 1. Results of intensity statistics. - empirical curve for non-centrosymmetric structure; 0 : empirical curve for centrosymmetric structure; x : curve, calculated for $h 0 l$ reflections; + : curve, calculated for $h k 0$ reflections.
$C 2 / c$ and $C c$, differing in the presence or absence of a center of symmetry. In order to decide between the space groups, intensity statistics (Howells, Phillips \& Rogers, 1950) were computed for $h k 0, h 0 l$ and $h 1 l$ reflections, of which 80,80 and 140 respectively occurred on the Weissenberg films (Fig. 1). The curve for the reflections $h l l$ coincides with that for $h k 0$. Though the number of reflections is rather small for the results to be significant, the statistics point in all cases to the presence of a symmetry center, and therefore to the space group $C 2 / c$. The evidence is not conclusive however, since the number of the-predominantly scattering-sulfur atoms may be really too small to apply statistical methods.

3. Attempt at structure determination in the space group C2/c

As this space group was suggested by the statistics and is easiest to handle, we took it as the basis for our trial analysis. The space group $C 2 / c$ contains fourfold and eightfold positions. Of the total of 8 nitrogen, 12 sulfur and 56 oxygen atoms, 4 of the sulfur atoms must be in fourfold position; as a $\mathrm{S}_{3} \mathrm{O}_{10}$ group consisting of three linked tetrahedra cannot have a center of symmetry, but can contain a twofold axis, the only possible position for these fourfold sulfur atoms is (4e) of the International Tables.

The optical evidence, as well as a projection of the vector map along the c axis, suggests that chain-like $\mathrm{S}_{3} \mathrm{O}_{10}$ groups are stretched along the normal to the (100) plane. By fitting a model of this group to the ($h k 0$) vector map a trial structure was derived and refined, first by Fourier syntheses, later by ($F_{o}-F_{c}$) series. A position for the NO_{2} group was found during the refining process. The final Fourier projection along the c axis is shown in Fig. 2, containing only the

Fig. 2. Projection of electron density along [001]. Contour lines at equal intervals, on arbitrary scale. S_{1} : central atom of the $\mathrm{S}_{3} \mathrm{O}_{10}$-chain; S_{2} : non-central atom of this chain; O_{1} : oxygen atom connecting S_{1} and $\mathrm{S}_{2} ; \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}$: end oxygens, bound to $\mathrm{S}_{2} ; \mathrm{O}_{5}$: oxygen bound to S_{1} only; $\mathrm{O}_{6}, \mathrm{O}_{7}$: oxygen atoms of the NO_{2} group.
asymmetric unit, i.e. one half of the $\mathrm{S}_{3} \mathrm{O}_{10}$ ion and one NO_{2} group.

z Parameters

According to the projection along [010] of the vector map (Fig. 3) there are two possibilities for the position of S_{2} in this projection, as either $O A$ or $O B$ may represent the $S_{1}-S_{2}$ vector, both having the proper x coordinate and a length such as might be expected for the $S-S$ distance. For both configurations, a set of atomic parameters could be found after a refinement procedure analogous to that used for the [001] projection. These two structures, which are practically the

Fig. 3. Patterson projection on (010).

Fig. 4. Atomic positions of the two calculated configurations in space group $C 2 / c$, projected along the b axis. The primed atoms refer to the configuration indicated by broken lines.
mirror image of each other, are shown in Fig. 4, indicated by full and broken lines respectively. The agreement between F_{o} and F_{c} of the $h 0 l$ reflections was fairly satisfactory for both sets of atomic coordinates (R about $0 \cdot 20$). In order to decide between the two structures, F values for the reflections $h l l$ were cal-
culated. Surprisingly, neither of the two possibilities showed the slightest agreement for these reflections. Moreover, both structures appeared suspect on chemical grounds: extremely short distances (about $2 \AA$) were found in both cases between O_{3} and the three atoms of the NO_{2} group. Since the position of the nitrogen atom is not very certain, the structures would then rather be described as the condensation product of two NO_{2} groups with an $\mathrm{S}_{3} \mathrm{O}_{10}$ group, thus:

This description is, however, definitely at odds with the Raman evidence for isolated NO_{2} groups, as stated in § 1 .

In order to get further information, a Fourier summation was carried out with structure factors $h 1 l$. For the space group $C 2 / c$, the following two relations hold for summations carried out with the structure factors $F(h p l)$ of the p^{\prime} 'th layer line around the b axis:

$$
\begin{align*}
& \sum_{h}^{l=\text { even }} \sum_{l} F(h p l) \cos 2 \pi(h x / a+l z / c) \\
& =C(p) \sum_{j=1}^{N} \varrho_{j}\left(x-x_{j}, z-z_{j}\right) \cos 2 \pi p y_{j} / b \tag{1}\\
& \begin{aligned}
& \sum_{h} \sum_{l} \sum_{l} F(h p l) \sin 2 \pi(h x / a+l z / c) \\
&=C(p) \sum_{j=1}^{N} \varrho_{j}\left(x-x_{j}, z-z_{j}\right) \sin 2 \pi p y_{j} / b
\end{aligned}
\end{align*}
$$

$\varrho_{j}\left(x-x_{j}, z-z_{j}\right)$ is the projection of the electron distribution function around the atom j; the summation on

Fig. 5. Result of the Fourier summation, given by equation (2). $F(h 1 l)$ only with odd l 's. Dotted line: zero contour line; full lines indicate positive area; broken lines indicate negative area.
the right-hand side is over the atoms in the asymmetric unit. $C(p)$ is a constant for the reciprocal-lattice plane $p=$ constant; its value depends on the analytical form chosen for ϱ_{j}. Clews \& Cochran (1949) derived analogous formulae for the case of atoms not overlapping in the projection; the relations (1) and (2) were, however, derived without this assumption (Eriks, 1952).

The summation (2), carried out with $p=1$ and with signs corresponding to the position shown in full lines in Fig. 4, gave the particularly interesting result shown in Fig. 5. The negative areas A, B, C and D can be attributed only to O_{6} and O_{7} of the NO_{2} group, y_{j} for these atoms being 0.819 and 0.878 respectively. Now, these four regions appear exactly in the places where the two oxygen atoms of NO_{2} were found in the two sets of atomic coordinates of Fig. 4, as calculated from the b-axis projection. Moreover, the peak corresponding to S_{2} is too low; the weight, $\sin 118^{\circ}$, should make this peak nearly as high as that of S_{1} at $x=0, y \approx \frac{1}{4}$, $z=\frac{1}{4}$, whereas the peak at $x \approx \frac{1}{6}, z \approx \frac{1}{4}$, composed of an oxygen with weight $\sin 66^{\circ}$ and nitrogen with weight $\sin -65^{\circ}$ should be practically absent in this synthesis.

A similar synthesis based on the signs of the configuration shown in broken lines in Fig. 5 gives essentially the same result, although several terms change signs. In fact, the map Fig. 5 suggests strongly the superposition of two configurations, such as occurs when the electron density of an acentric structure is calculated with a 'false' center of symmetry, introduced by phases derived from the-centrosymmetric-configurations of heavy atoms; or when phases in absolute magnitudes have been estimated by isomorphous substitution and are carried into the synthesis both with + and - sign (Bokhoven, Schoone \& Bijvoet, 1951).

4. Structure determination in the space group Cc

It seems, therefore, that the space group $C 2 / c$ is not the correct one, despite the evidence offered by the statistical test. The interpretation of Fig. 5 outlined in the last paragraph of § 3 then suggests that we should combine the left half of one configuration of the $\mathrm{S}_{3} \mathrm{O}_{10}$ group with the right half of the other.

It is arbitrary whether we take the right half of the configuration shown in broken lines and the left half of that shown in full lines, or the centrosymmetric configuration. We chose the first alternative (Fig. 6). Moreover, in order to avoid abnormal short distances between O_{3} and NO_{2}, the NO_{2} configuration shown in broken lines was superimposed on the half of the $\mathrm{S}_{3} \mathrm{O}_{10}$ group shown in full lines, and vice versa.

This supposition worked like magic; not only did the R factor drop to 0.15 in both projections after one refinement cycle but also the recalcitrant $h l l$ reflections capitulated: $R=0 \cdot 22$.

As a precision determination was not aimed at, and was, moreover, practically impossible in view of the

Fig. 6. Electron-density map and atomic position for space group Cc, projected along the b axis.
uncertainties in the absorption correction, we stopped the refinement at this point. The final coordinates are shown in Table 1.

Table 1. Final coordinates							
Atom	x	y	z	Atom	x	y	z
$\mathrm{~S}_{1}$	0	0.264	0.250				
$\mathrm{~S}_{2}$	0.1472	0.314	0.390	$\mathrm{~S}_{2}^{\prime}$	0.8528	0.314	0.233
O_{1}	0.0625	0.398	0.292	O_{1}^{\prime}	0.9375	0.398	0.236
O_{2}	0.1764	0.489	0.376	O_{2}^{\prime}	0.8236	0.489	0.202
O_{3}	0.1488	0.217	0.550	O_{3}	0.812	0.217	0.408
O_{4}	0.1542	0.200	0.256	O_{4}^{\prime}	0.8458	0.200	0.100
O_{5}	0.0	0.175	0.086	O_{5}^{\prime}	0.0	0.122	0.380
O_{6}	0.0930	0.814	0.333	O_{6}^{\prime}	0.9070	0.814	0.233
O_{3}	0.2000	0.876	0.378	O_{7}^{\prime}	0.800	0.876	0.197
N	0.1472	0.844	0.356	$\mathrm{~N}^{2}$	0.8528	0.844	0.217

The Fourier projection along the b axis and the atomic positions are shown in Fig. 6. The calculated and experimental structure factors have been given by Eriks (1952). The calculated structure factors contain a temperature factor $\exp \left(-3 \cdot 0 \sin ^{2} \theta / \lambda^{2}\right)$.

5. Interatomic distances and angles

Distances were calculated from the atomic parameters, for both left and right half of the molecule. Results are shown in Table 2.

6. Discussion of the structure

The crystal structure determination gives a confirmation of the original idea: that $\mathrm{N}_{2} \mathrm{O}_{5} .3 \mathrm{SO}_{3}$ has to be considered as a mainly ionic compound containing NO_{2}^{+}and $\mathrm{S}_{3} \mathrm{O}_{10}^{--}$ions. The structure of this $\mathrm{S}_{3} \mathrm{O}_{10}^{--}$ion has not been investigated before, but it is supposed to exist in $\mathrm{K}_{2} \mathrm{~S}_{3} \mathrm{O}_{10}$ (Baumgarten \& Thilo, 1938).

Although the space group does not reveal it, the ion $\mathrm{S}_{3} \mathrm{O}_{10}$ has a marked pseudo symmetry plane. It may be remarked that in the related structure $\mathrm{HNO}_{3} .3 \mathrm{SO}_{3}=\mathrm{S}_{3} \mathrm{O}_{10} \mathrm{H} . \mathrm{NO}_{2}$ the anion $\mathrm{S}_{3} \mathrm{O}_{10}$ does have such a symmetry plane according to space group requirements (Steeman, unpublished). In the present structure, this symmetry plane extends also over the

Table 2. Interatomic distances and angles

Distances within $\mathrm{S}_{3} \mathrm{O}_{10}$ group					
	Left	Right		Left	Right
$\mathrm{S}_{1}-\mathrm{S}_{2}$	2.88 A	2.87 A	$\mathrm{O}_{1}-\mathrm{O}_{1}^{\prime}$	$2 \cdot 40$ A	-
$\mathrm{S}_{1}-\mathrm{O}_{1}$	1.55	1.54	$\mathrm{O}_{1}-\mathrm{O}_{2}$	$2 \cdot 29$	$2 \cdot 28$
$\mathrm{S}_{2}-\mathrm{O}_{1}$	$1 \cdot 76$	$1 \cdot 78$	$\mathrm{O}_{1}-\mathrm{O}_{3}$	$2 \cdot 68$	$2 \cdot 65$
$\mathrm{S}_{2}-\mathrm{O}_{2}$	1.40	$1 \cdot 41$	$\mathrm{O}_{1}-\mathrm{O}_{4}$	$2 \cdot 36$	$2 \cdot 36$
$\mathrm{S}_{2}-\mathrm{O}_{3}$	1.50	$1 \cdot 40$	$\mathrm{O}_{1}-\mathrm{O}_{5}$	$2 \cdot 45$	$2 \cdot 40$
$\mathrm{S}_{2}-\mathrm{O}_{4}$	1.30	1.34	$\mathrm{O}_{1}-\mathrm{O}_{5}^{\prime}$	$2 \cdot 50$	$2 \cdot 52$
$\mathrm{S}_{1}-\mathrm{S}_{5}$	$1 \cdot 44$	$1 \cdot 40$	$\mathrm{O}_{3}-\mathrm{O}_{5}^{\prime}$	3.04	$3 \cdot 00$
$\mathrm{O}_{2}-\mathrm{O}_{3}$	$2 \cdot 50$	$2 \cdot 50$	$\mathrm{O}_{4}-\mathrm{O}_{5}$	$3 \cdot 06$	$3 \cdot 02$
$\mathrm{O}_{2}-\mathrm{O}_{4}$	$2 \cdot 32$	$2 \cdot 30$	$\mathrm{O}_{5}-\mathrm{O}_{5}^{\prime}$	$2 \cdot 25$	
$\mathrm{O}_{3}-\mathrm{O}_{4}$	$2 \cdot 30$	$2 \cdot 25$			
$\mathrm{N}-\mathrm{O}$ distances in the NO_{2}-group on both sides					
$\mathrm{N}-\mathrm{O}_{6}=1.06 \AA \quad \mathrm{~N}-\mathrm{O}_{7}=1.05 \AA$					

Shortest distances between NO_{2} and the oxygen atoms of

Shortest distances between oxygen atoms of neighboring

	groups		
$\mathrm{O}_{7}-\mathrm{O}_{7}$	$3.21 \AA$		
$\mathrm{O}_{3}-\mathrm{O}_{4}$	3.39	$\mathrm{O}_{5}-\mathrm{O}_{5}$	$2.70 \AA$
$\mathrm{O}_{5}-\mathrm{O}_{6}$	2.80	$\mathrm{O}_{2}-\mathrm{O}_{3}$	3.22

Calculated bond angles in the $\mathrm{S}_{3} \mathrm{O}_{10}$ group

$\mathrm{O}_{1}-\mathrm{S}_{1}-\mathrm{O}_{1}$	100°	$\mathrm{O}_{1}-\mathrm{S}_{2}-\mathrm{O}_{3}$	114°
$\mathrm{O}_{5}-\mathrm{S}_{1}-\mathrm{O}_{5}$	107	$\mathrm{O}_{1} \mathrm{~S}_{2}-\mathrm{O}_{4}$	99
$\mathrm{O}_{1}-\mathrm{S}_{1}-\mathrm{O}_{5}$	113	$\mathrm{O}_{2}-\mathrm{S}_{2}-\mathrm{O}_{4}$	116
$\mathrm{~S}_{1}-\mathrm{O}_{1}-\mathrm{S}_{2}$	122	$\mathrm{O}_{3}-\mathrm{S}_{2}-\mathrm{O}_{4}$	116
$\mathrm{O}_{1}-\mathrm{S}_{2}-\mathrm{O}_{2}$	93	$\mathrm{O}_{2}-\mathrm{S}_{2}-\mathrm{O}_{3}$	132

position of the two NO_{2} ions and in fact over whole layers parallel to the (100) plane and of thickness $\frac{1}{2} d_{(100)}$, but is lost in the stacking of these layers. If it is extended into the stacking of three subsequent layers, a twin on (100) is formed; the frequency of these twins was mentioned in § 2. The structure is further in agreement with the optical behavior:
positive double refraction with maximum elongation along the normal to (100).
The distances, especially between O_{3} and the NO_{2} oxygens, are appreciably shorter than twice the van der Waals radius of oxygen, which might be explained by assuming a weak bonding between this O_{3} atom and the NO_{2}^{+}ion. In this case the NO_{2}^{+}would probably not be linear, the N atom being shifted somewhat towards O_{3}. It is to be regretted that the exact position of this N atom could not be determined in either projection as it coincides with O_{4} in the one and with S_{2} in the other. The Raman spectra seem to indicate, however, that such a slight deviation from linearity of the NO_{2}^{+}ion actually occurs (Gerding \& Eriks, 1952).

The N-O distance found in NO_{2}^{+}is shorter than that of $1 \cdot 16 \AA$, found in $\mathrm{N}_{2} \mathrm{O}_{5}$ for the same ion. This, again, may result from the inaccuracy in the position of nitrogen.

There exists a striking difference between the two single S-0 distances ($1.55 \AA$ and $1.77 \AA$). The comparatively long $\mathrm{S}_{2}-\mathrm{O}_{1}$ distance may well give an explanation for the observation by Baumgarten and Thilo (1938) that the $\mathrm{S}_{3} \mathrm{O}_{10}^{-}$ion in $\mathrm{K}_{2} \mathrm{~S}_{3} \mathrm{O}_{10}$ loses one molecule of SO_{3} at about 150° C., to yield $\mathrm{S}_{2} \mathrm{O}_{7}^{--}$.

7. Pseudo-homometric structures

A few remarks may finally be made about the difficulties encountered in the structure determination, especially with respect to the space group. It is clear that a number of coincidences have combined to confuse the issue of the space-group determination. First, in the [001] projection of the structure in Cc there appeared to be no reason to introduce different y coordinates for both halves of the molecules, except for O_{5} and O_{5}^{\prime} (cf. Table 1); so there is a pseudo center of symmetry in this projection owing to the accidental values of the y coordinates. Secondly, from inspection of Fig. 4 it is more or less clear why two configurations in the space group $C 2 / c$ give a fairly good fit in the projection along the b axis: the position of S_{2} in the one configuration is occupied by N and O_{4} in the other
and these two atoms together are practically equivalent to S in scattering power. In fact, on inspection of Fig. 4 it is seen that the b projections of S-O distances in both sets are closely similar if $\mathrm{N}+\mathrm{O}_{4}$ are considered to be equivalent to S. Both vector sets show some divergence from that of the 'true' structure (Fig. 6), corresponding to a drop in R from about 0.20 to 0.15 . It may, however, be remarked that in the space group $C 2 / c$ a distinctly better fit could be arrived at by taking an averaged structure of the two sets of Fig. 4, combined with the y parameters of Fig. 3. This averaged structure is pseudo-homometric with the structure in the space group Cc, and accordingly gives a satisfactory agreement with observed intensities, in particular with those of reflections $h 1 \mathrm{ll}$. In fact, the difference in R between this averaged structure in $C 2 / c$ and the normal one in $C c$ is so small that the former was discarded rather on general grounds and because it leads to some improbably small interionic $0-0$ distances.

This being a case of pseudo-homometry between a set with symmetry $C c$ and one with symmetry $C 2 / c$, it is clear that the Wilson test was bound to fail.

References

Baumgarten, P. \& Thimo, E. (1938). Ber. dtsch. chem. Ges. 71, 2596.
Bokhoven, C., Schoone, J. C. \& Bijvoet, J. M. (1951). Acta Cryst. 4, 275.
Chédin, J. (1937). Ann. Chim. 8, 243.
Clews, C. J. B. \& Cochran, W. (1949). Acta Cryst. 2, 46.
Cox, E. G., Jeffrey, G. A. \& Truter, M. R. (1948). Nature, Lond. 162, 259.
Eriks, K. (1952). Thesis, Ansterdam.
Gerding, H. \& Eriks, K. (1952). Rec. Trav. chim. PaysBas, 71, 773.
Gillespie, R. J., Hughes, E. D. \& Ingold, C. K. (1950). J. Chem. Soc. p. 2473 . (See also other articles in J.Chem. Soc. (1950), pp. 2493-2627.)
Grison, E., Eriks, K. \& Vries, J. L. de. (1950). Acta Cryst. 3, 290.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Pictet, A. \& Karl, G. (1908). Bull. Soc. Chim. Fr. (4), 3, 1114.

[^0]: * Present Address: School of Chemistry, University of Minnesota, Minneapolis 14, U.S.A.

